75 research outputs found

    Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the ‘teapot effect’ at large Reynolds numbers

    Get PDF
    Recently, the authors considered a thin steady developed viscous free-surface flow passing the sharp trailing edge of a horizontally aligned flat plate under surface tension and the weak action of gravity, acting vertically, in the asymptotic slender-layer limit (J. Fluid Mech., vol. 850, 2018, pp. 924–953). We revisit the capillarity-driven short-scale viscous–inviscid interaction, on account of the inherent upstream influence, immediately downstream of the edge and scrutinise flow detachment on all smaller scales. We adhere to the assumption of a Froude number so large that choking at the plate edge is insignificant but envisage the variation of the relevant Weber number of O(1). The main focus, tackled essentially analytically, is the continuation of the structure of the flow towards scales much smaller than the interactive ones and where it no longer can be treated as slender. As a remarkable phenomenon, this analysis predicts harmonic capillary ripples of Rayleigh type, prevalent on the free surface upstream of the trailing edge. They exhibit an increase of both the wavelength and amplitude as the characteristic Weber number decreases. Finally, the theory clarifies the actual detachment process, within a rational description of flow separation. At this stage, the wetting properties of the fluid and the microscopically wedge-shaped edge, viewed as infinitely thin on the larger scales, come into play. As this geometry typically models the exit of a spout, the predicted wetting of the wedge is related to what in the literature is referred to as the teapot effect

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    Convergence analysis of planewave expansion methods for 2D Schrodinger operators with discontinuous periodic potentials

    Get PDF

    Planewave expansion methods for photonic crystal fibres

    Get PDF

    A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow

    Get PDF
    In this paper we address the problem of the prohibitively large computational cost of existing Markov chain Monte Carlo methods for large--scale applications with high dimensional parameter spaces, e.g. in uncertainty quantification in porous media flow. We propose a new multilevel Metropolis-Hastings algorithm, and give an abstract, problem dependent theorem on the cost of the new multilevel estimator based on a set of simple, verifiable assumptions. For a typical model problem in subsurface flow, we then provide a detailed analysis of these assumptions and show significant gains over the standard Metropolis-Hastings estimator. Numerical experiments confirm the analysis and demonstrate the effectiveness of the method with consistent reductions of more than an order of magnitude in the cost of the multilevel estimator over the standard Metropolis-Hastings algorithm for tolerances ε<102\varepsilon < 10^{-2}

    Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3

    Get PDF
    This is the final version. Available from NeurIPS 2020 via the DOI in this recordUncertainty Quantification through Markov Chain Monte Carlo (MCMC) can be prohibitively expensive for target probability densities with expensive likelihood functions, for instance when the evaluation it involves solving a Partial Differential Equation (PDE), as is the case in a wide range of engineering applications. Multilevel Delayed Acceptance (MLDA) with an Adaptive Error Model (AEM) is a novel approach, which alleviates this problem by exploiting a hierarchy of models, with increasing complexity and cost, and correcting the inexpensive models on-the-fly. The method has been integrated within the open-source probabilistic programming package PyMC3 and is available in the latest development version. In this paper, the algorithm is presented along with an illustrative example.Turing AI fellowshipEngineering and Physical Sciences Research Council (EPSRC

    Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods

    Get PDF
    corecore